
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

1 Instructor: Daniel Llamocca

Unit 1 – Introduction to Logic Circuits

FUNDAMENTAL CONCEPTS

BOOLEAN ALGEBRA
▪ This is the foundation for designing and analyzing digital systems. It deals with the case where variables assume only one

of two values: TRUE (usually represented by the symbol '1'), and FALSE (usually represented by the symbol '0'). This is also
called Two-valued Boolean Algebra or Switching Algebra.

▪ A circuit consisting of switches can be represented in terms of Boolean algebraic equations. The equations can be then
manipulated into the form representing the simplest circuit. The circuit may then be immediately drawn from the equations.
This powerful method first appeared in: “A symbolic Analysis of Relay and Switching Circuits”, Claude E. Shannon,
Transactions of the AIEE, vol. 57, no. 12, Dec. 1938, pp. 713-721.

BASIC OPERATIONS
▪ X and Y are Boolean variables. Boolean variables are used to represent the inputs or outputs of a digital circuit.

OPERATION BOOLEAN EXPRESSION OPERATION

NOT 𝑋′(𝑜𝑟 𝑋̅) Logical negation

AND 𝑋. 𝑌 Logical conjunction of two statements

OR 𝑋 + 𝑌 Logical disjunction of two statements

TRUTH TABLES AND LOGIC GATES
▪ Truth Table: A tabular listing of function values for all possible combinations of values on its input arguments. If there are

𝑛 inputs, there are 2𝑛 possible combinations.

▪ Logic Gates: Hardware components that produce a logic 1 or logic 0 depending on the state of inputs. Boolean functions
can be implemented with logic gates.

NOT
gate:

X F = X'

0 1

1 0

2-input
AND
gate:

X Y F = X.Y

0 0 0

0 1 0

1 0 0

1 1 1

2-input
OR

gate:

X Y F = X+Y

0 0 0

0 1 1

1 0 1

1 1 1

▪ Logic Gates (AND, OR) can have multiple inputs:

AXIOMS

0.0 = 0 1.1 = 1 0.1 = 1.0 = 0 0̅ = 1

1+1=1 0+0 = 0 1+0 = 0+1 = 1 1̅ = 0

F = X'X

F = X.Y.Z... F = X+Y+Z+...

X

Y

X

Y

Z ...

Z ...

F = X.Y
X

Y

F = X+Y
X

Y

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

2 Instructor: Daniel Llamocca

THEOREMS

Variable dominant rule
𝑋. 1 = 𝑋
𝑋 + 0 = 𝑋

Commutative rule
𝑋. 𝑌 = 𝑌. 𝑋
𝑋 + 𝑌 = 𝑌 + 𝑋

Complement rule
𝑋. 𝑋̅ = 0
𝑋 + 𝑋̅ = 1

Idempotency
𝑋. 𝑋 = 𝑋
𝑋 + 𝑋 = 𝑋

Identity Element
𝑋. 0 = 0
𝑋 + 1 = 1

Double negation 𝑋̿ = 𝑋

Associative rule
𝑋. (𝑌. 𝑍) = (𝑋. 𝑌). 𝑍
𝑋 + (𝑌 + 𝑍) = (𝑋 + 𝑌) + 𝑍

Distributive rule
𝑋. (𝑌 + 𝑍) = 𝑋. 𝑌 + 𝑋. 𝑍
𝑿 + 𝒀. 𝒁 = (𝑿 + 𝒀). (𝑿 + 𝒁)

Other Theorems

Absorption
𝑋. (𝑋 + 𝑌) = 𝑋. 𝑋 + 𝑋. 𝑌 = 𝑋 + 𝑋. 𝑌 = 𝑋. (1 + 𝑌) = 𝑋
𝑋 + 𝑋. 𝑌 = 𝑋. (1 + 𝑌) = 𝑋

Adjacency
𝑋. 𝑌 + 𝑋. 𝑌̅ = 𝑋
(𝑋 + 𝑌)(𝑋 + 𝑌̅) = 𝑋

Consensus

𝑋. 𝑌 + 𝑋̅𝑍 + 𝑌𝑍 = 𝑋𝑌 + 𝑋̅𝑍
(𝑋 + 𝑌)(𝑋̅ + 𝑍)(𝑌 + 𝑍) = (𝑋 + 𝑌)(𝑋̅ + 𝑍)
Corollary: (𝑋 + 𝑌)(𝑋̅ + 𝑍) = 𝑋̅𝑌 + 𝑋𝑍

DeMorgan
𝑋. 𝑌̅̅ ̅̅ ̅ = 𝑋̅ + 𝑌̅, 𝑋. 𝑌. 𝑍 …̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑋̅ + 𝑌̅ + 𝑍̅ + ⋯
𝑋 + 𝑌̅̅ ̅̅ ̅̅ ̅̅ = 𝑋̅. 𝑌̅, 𝑋 + 𝑌 + 𝑍+. . .̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑋̅. 𝑌̅. 𝑍̅ …

Simplification
𝑋. (𝑋̅ + 𝑌) = 𝑋. 𝑌
𝑋 + 𝑋̅𝑌 = 𝑋 + 𝑌

▪ A useful application of the theorems is on the simplification of Boolean functions which leads to the reduction of the amount

of logic gates:

✓ Example:

𝐹 = (𝐴 + 𝐵̅𝐶 + 𝐷 + 𝐸𝐹)(𝐴 + 𝐵̅𝐶 + 𝐷 + 𝐸𝐹̅̅ ̅̅ ̅̅ ̅̅ ̅̅)
𝐹 = (𝑋 + 𝑌)(𝑋 + 𝑌̅), 𝑋 = 𝐴 + 𝐵̅𝐶, 𝑌 = 𝐷 + 𝐸𝐹
𝐹 = (𝑋 + 𝑌)(𝑋 + 𝑌̅) = 𝑋
→ 𝐹 = 𝐴 + 𝐵̅𝐶

✓ Example:

𝐹 = (𝑋 + 𝑌̅̅ ̅̅ ̅̅ ̅̅)𝑍 + 𝑋𝑌̅𝑍̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐹 = 𝑋̅𝑌̅𝑍 + 𝑋𝑌̅𝑍̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐹 = 𝑌̅𝑍(𝑋 + 𝑋̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

→ 𝐹 = 𝑌̅𝑍̅̅ ̅̅ = 𝑌 + 𝑍̅

✓ Example:

𝐹 = (𝑋 + 𝑌)(𝑋 + 𝑌̅) = 𝑋𝑋 + 𝑋𝑌̅ + 𝑌𝑋 + 𝑌𝑌̅ = 𝑋 + 𝑋(𝑌̅ + 𝑌) = 𝑋 + 𝑋 = 𝑋

✓ Example:

𝐹 = 𝑥1𝑥2 + 𝑥1̅̅̅ 𝑥2̅̅ ̅ + 𝑥2𝑥1̅̅̅
𝐹 = 𝑥1𝑥2 + 𝑥1̅̅̅(𝑥2 + 𝑥2̅̅ ̅) = 𝑥1𝑥2 + 𝑥1̅̅̅

𝐹 = 𝑥1̅̅̅ + 𝑥1𝑥2 = (𝑥1̅̅̅ + 𝑥1)(𝑥1̅̅̅ + 𝑥2)

→ 𝐹 = 𝑥1̅̅̅ + 𝑥2

✓ Example:

𝐹 = 𝐴(𝐵 + 𝐶̅) + 𝐴̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝐹 = 𝐴(𝐵 + 𝐶̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 𝐴 = (𝐴̅ + 𝐵 + 𝐶̅̅̅ ̅̅ ̅̅ ̅̅). 𝐴

→ 𝐹 = (𝐵 + 𝐶̅̅̅ ̅̅ ̅̅ ̅̅). 𝐴 = 𝐴𝐵̅𝐶

X

Y
F  X F

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

3 Instructor: Daniel Llamocca

DERIVING BOOLEAN FUNCTIONS FROM TRUTH TABLES

Using 1s:

A B C F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

𝐹 = 𝐴̅𝐵𝐶̅ + 𝐴𝐵̅𝐶̅ + 𝐴𝐵𝐶

Using 0s:

A B C F

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

𝐹 = (𝐴 + 𝐵 + 𝐶)(𝐴̅ + 𝐵 + 𝐶̅)

Other Logic Gates

𝐹 = 𝑋̅𝑌 + 𝑋𝑌̅ = 𝑋𝑌

2-input
XNOR
gate:

A B F

0 0 1

0 1 0

1 0 0

1 1 1

𝐹 = 𝑋𝑌 + 𝑋̅𝑌̅ = 𝑋𝑌̅̅ ̅̅ ̅̅

2-input
NAND
gate

A B F

0 0 1

0 1 1

1 0 1

1 1 0

2-input
NOR
gate

A B F

0 0 1

0 1 0

1 0 0

1 1 0

2-input
XOR
gate

A B F

0 0 0

0 1 1

1 0 1

1 1 0

A

B

C

F

A

B

C
F

X

Y F F
X

Y

X

Y
F  FX

Y

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

4 Instructor: Daniel Llamocca

SUM OF PRODUCTS (SOP) AND PRODUCT OF SUMS (POS) USING MINTERMS AND MAXTERMS:

MINTERMS and MAXTERMS (3 variable function)

 𝒙𝟏 𝒙𝟐 𝒙𝟑 Minterms Maxterms

0 0 0 0 𝑚0 = 𝑥1̅̅ ̅ 𝑥2̅̅ ̅ 𝑥3̅̅ ̅ 𝑀0 = 𝑥1 + 𝑥2 + 𝑥3

1 0 0 1 𝑚1 = 𝑥1̅̅ ̅ 𝑥2̅̅ ̅𝑥3 𝑀1 = 𝑥1 + 𝑥2 + 𝑥3̅̅ ̅

2 0 1 0 𝑚2 = 𝑥1̅̅ ̅ 𝑥2𝑥3̅̅ ̅ 𝑀2 = 𝑥1 + 𝑥2̅̅ ̅ + 𝑥3

3 0 1 1 𝑚3 = 𝑥1̅̅ ̅ 𝑥2𝑥3 𝑀3 = 𝑥1 + 𝑥2̅̅ ̅ + 𝑥3̅̅ ̅

4 1 0 0 𝑚4 = 𝑥1𝑥2̅̅ ̅ 𝑥3̅̅ ̅ 𝑀4 = 𝑥1̅̅ ̅ + 𝑥2 + 𝑥3

5 1 0 1 𝑚5 = 𝑥1𝑥2̅̅ ̅𝑥3 𝑀5 = 𝑥1̅̅ ̅ + 𝑥2 + 𝑥3̅̅ ̅

6 1 1 0 𝑚6 = 𝑥1𝑥2𝑥3̅̅ ̅ 𝑀6 = 𝑥1̅̅ ̅ + 𝑥2̅̅ ̅ + 𝑥3

7 1 1 1 𝑚7 = 𝑥1𝑥2𝑥3 𝑀7 = 𝑥1̅̅ ̅ + 𝑥2̅̅ ̅ + 𝑥3̅̅ ̅

▪ A function with 𝑛 variables can have up to 2𝑛 minterms (or 2𝑛 maxterms) from 𝑚0 to 𝑚2𝑛−1 (or from 𝑀0 to 𝑀2𝑛−1)

▪ Note that: 𝑚𝑖̅̅̅̅ = 𝑀𝑖.

▪ Also, for 𝑛 variables, the total number of different functions is 22𝑛
.

▪ A function can be expressed as a sum of minterms or as a product of maxterms:

✓ When a minterm evaluates to 1, it implies that the function evaluates to 1.
Example: 𝑓(𝑥, 𝑦) = 𝑥𝑦 + 𝑥̅𝑦̅. Here, 𝑓(𝑥, 𝑦) = 1 if 𝑥𝑦 = 00,11. Thus, the minterms are 𝑚0 and 𝑚3. 𝑓(𝑥, 𝑦) = 𝑚0 + 𝑚3

✓ When a maxterm evaluates to 0, it implies that the function evaluates to 0.
Example: 𝑓(𝑥, 𝑦) = (𝑥 + 𝑦̅)(𝑥̅ + 𝑦). Here, 𝑓(𝑥, 𝑦) = 0 if 𝑥𝑦 = 10,01. Thus, the maxterms are 𝑀1 and 𝑀2. 𝑓(𝑥, 𝑦) = 𝑀1𝑀2

▪ A sum of products (SOP) that include only minterms or a product of sums (POS) that contain only maxterms are called

Canonical Forms.
▪ If a SOP includes terms that are not minterms (or a POS includes terms that are not maxterms), they are called non-canonical

forms. For example:
✓ 𝐹(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2𝑥3 + 𝑥1̅̅̅ 𝑥2̅̅ ̅

✓ 𝐹(𝑥1, 𝑥2, 𝑥3) = (𝑥1 + 𝑥2 + 𝑥3)(𝑥1̅̅̅ + 𝑥2̅̅ ̅)

✓ 𝐹(𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2𝑥3 + 𝑥1𝑥2̅̅ ̅𝑥3 + 𝑥1̅̅̅𝑥2𝑥3̅̅ ̅ + (𝑥1̅̅̅ + 𝑥2 + 𝑥3)

Example:

X Y Z F Sum of Products

0 0 0 0 𝐹 = 𝑋̅𝑌̅𝑍 + 𝑋𝑌̅𝑍̅ + 𝑋𝑌̅𝑍 + 𝑋𝑌𝑍̅
𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚1, 𝑚4, 𝑚5, 𝑚6).

𝐹(𝑋, 𝑌, 𝑍) = ∑ 𝑚(1,4,5,6) Also: 𝐹̅(𝑋, 𝑌, 𝑍) = ∑ 𝑚(0,2,3,7)

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1 Product of Sums

1 0 1 1 𝐹 = (𝑋 + 𝑌 + 𝑍)(𝑋 + 𝑌̅ + 𝑍)(𝑋 + 𝑌̅ + 𝑍̅)(𝑋̅ + 𝑌̅ + 𝑍̅)

𝐹(𝑋, 𝑌, 𝑍) = ∏(𝑀0, 𝑀2, 𝑀3, 𝑀7).

𝐹(𝑋, 𝑌, 𝑍) = ∏ 𝑀(0,2,3,7) Also: 𝐹̅(𝑋, 𝑌, 𝑍) = ∏ 𝑀(1,4,5,6)

1 1 0 1

1 1 1 0

▪ Note how 𝐹(𝑋, 𝑌, 𝑍) = ∑ 𝑚(1,4,5,6) = ∏ 𝑀(0,2,3,7).

TIMING DIAGRAMS

A

B
F

C

A

F

B

C

G

G

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

5 Instructor: Daniel Llamocca

DIGITAL DESIGN

▪ When designing digital circuits, specifications are provided for the desired circuit.
▪ Boolean variables are used to represent the state of inputs (e.g.: switches, buttons) and outputs (e.g.: LEDs, locks).

▪ Truth Table Method: This is a simple methodology of the design of digital circuits:

✓ The relationship between the inputs and outputs of the circuit is determined by completing the Truth Table.
✓ The Boolean functions are then generated and simplified. We can then sketch the resulting circuit using logic gates.
✓ This simple, yet powerful technique works very well for a small number of inputs. For large number of inputs, this method

is impractical as the number of entries grow exponentially. For a circuit requiring 16 input Boolean variables, the truth
table would need 65536 entries.

✓ Example (Majority gate): Design a 3-input circuit that generates a ‘0’ when two or more of the inputs are ‘0’. It also

generates a ‘1’ when two or more of the inputs are ‘1’. Provide the truth table, the Boolean equation, and sketch the
logic circuit.

𝑓 = 𝑥̅𝑦𝑧 + 𝑥𝑦̅𝑧 + 𝑥𝑦𝑧̅ + 𝑥𝑦𝑧

𝑓 = 𝑥̅𝑦𝑧 + 𝑥(𝑦̅𝑧 + 𝑦𝑧̅ + 𝑦𝑧) = 𝑥̅𝑦𝑧 + 𝑥(𝑦̅𝑧 + 𝑦)
𝑓 = 𝑥̅𝑦𝑧 + 𝑥(𝑦̅ + 𝑦)(𝑧 + 𝑦)

𝑓 = 𝑥̅𝑦𝑧 + 𝑥𝑧 + 𝑥𝑦 = 𝑥𝑧 + 𝑦(𝑥 + 𝑥̅𝑧)

𝑓 = 𝑥𝑧 + 𝑦(𝑥 + 𝑥̅)(𝑥 + 𝑧) = 𝑥𝑧 + 𝑦𝑥 + 𝑦𝑧

XILINX FPGA IMPLEMENTATION - DESIGN FLOW
▪ Design Entry: Here, the circuit is specified via a Hardware Description Language (HDL), Schematic, or a waveform. The

process of verification of the HDL syntax of schematic connections is called Synthesis.
▪ Behavioral Simulation: This is a crucial step. Your Design Entry might be 'error-free' syntax-wise, but it might not work

as expected. Here, we provide time-varying stimuli to the inputs of a logic circuit and verify that the outputs are correct.
When the stimuli is written in HDL, it is called a 'test-bench'. This process is very similar to using a signal generator to create
the inputs, and using a scope to visualize the outputs over time.

▪ Physical Mapping: Here we specify which inputs and outputs map to the specific components of the FPGA we selected
and the Printed Circuit Board (PCB) that houses the FPGA. In Xilinx Vivado, this is done via a file called Constraints File (.xdc)

▪ Timing Simulation: Behavioral Simulation only simulates the circuit 'logically', i.e., it does not take into account analog
and electrical effects. Timing simulation does consider the delay that exist between inputs and outputs, and therefore it is
very useful to determine glitches, hazards, etc.

▪ Implementation: Here, we "program" the FPGA. In this step, we grab a configuration file (called 'bitstream') and then
download it onto the FPGA configuration memory.

PRACTICE EXERCISES
▪ Simplify the following functions:

✓ 𝐹 = 𝑋̅𝑌̅𝑍 + 𝑋𝑌̅𝑍̅ + 𝑋𝑌̅𝑍 + 𝑋𝑌𝑍̅
✓ 𝐹(𝑋, 𝑌, 𝑍) = ∑(𝑚0, 𝑚2, 𝑚6)

✓ 𝐹 = (𝑋 + 𝑌 + 𝑍)(𝑋 + 𝑌 + 𝑍̅)
✓ 𝐹 = (𝐴̅𝐵 + 𝐶 + 𝐷)(𝐴̅𝐵 + 𝐷)

✓ 𝐹 = 𝐴(𝐶 + 𝐷̅𝐵) + 𝐴̅
✓ 𝐹(𝑋, 𝑌, 𝑍) = ∏(𝑀3, 𝑀4, 𝑀7)

▪ Given 𝑓 = 𝑥 + (𝑦𝑧), express 𝑓 using the canonical Sum of Products (SOP), i.e., sum of minterms.

▪ Using Boolean Algebra Theorems, prove that:
✓ The XOR operation is associative: 𝑎𝑏𝑐 = (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐) = 𝑏(𝑎𝑐).
✓ 𝑏(𝑎c) = (𝑏𝑎)(𝑏𝑐)
✓ 𝑥𝑦 = 𝑥̅𝑦̅, 𝑥𝑦̅ = 𝑥̅𝑦 = 𝑥𝑦̅̅ ̅̅ ̅̅

▪ Provide the Boolean functions and sketch the logic circuit. Use the two representations: i) Sum of Products, ii) Product of
Sums. Also, provide the minterms and maxterms representations.

A B C F1 F2l F3 F4 F5 F6 F7

0 0 0 0 1 0 1 0 1 0

0 0 1 1 0 1 1 1 0 0

0 1 0 0 0 1 1 0 1 1

0 1 1 1 0 1 1 1 1 1

1 0 0 1 0 1 0 0 1 0

1 0 1 0 1 0 0 1 0 0

1 1 0 1 1 0 0 0 1 1

1 1 1 1 1 1 0 1 0 1

x y z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

f

0

0

0

1

0

1

1

1

f

x

y

z

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

6 Instructor: Daniel Llamocca

▪ Simplify the function: 𝑓(𝑥, 𝑦, 𝑧) = 𝑓1 + 𝑓2. 𝑓3, where 𝑓1(𝑥, 𝑦, 𝑧) = ∑ 𝑚(3,5), 𝑓2(𝑥, 𝑦, 𝑧) = ∑ 𝑚(3,5,6), 𝑓3(𝑥, 𝑦, 𝑧) = ∏ 𝑀(0,3,5,7).

▪ Obtain the logic function (and minimize if possible) of the following circuits:

▪ Complete the timing diagram of the following circuit:

▪ Design a circuit that detects if somebody enters a room protected by 4 optical
sensors (𝑥, 𝑦, 𝑧, 𝑤). The circuit must activate an alarm (𝑓 = 1) if one or more of the

sensors activates. The sensor consists of an emitter and a receptor. A sensor
activates (e.g.: 𝑥 = 1) when the light beam is blocked from its receptor.

✓ Complete the truth table and provide the simplified Boolean expression.
✓ Sketch the minimized logic circuit.

• A doctoral student is defending his Dissertation. A 4-member committee is in charge of evaluating the work. The members

vote on whether to accept or reject the work. A simple majority vote is required. In case of a tie, the chair of the committee
makes the final determination. If we assign (𝑥, 𝑦, 𝑧, 𝑤) to the vote of each committee member (𝑤 represents the vote of the

chair of the committee), where ‘1’ means accept, and ‘0’ reject, design a circuit that generates 𝑓 = 1 when the committee

accepts the work, and 𝑓 = 0 if the work is rejected.

▪ Design a circuit that verifies the logical operation of

the OR gate. f = '1' (LED ON) if the OR gate works
properly. Assumption: when the OR gate is not
working, it generates 1's instead of 0's and vice
versa. Tip: First, generate the truth table.

▪ Security combination: A lock only opens when the 8 switches are set as in the figure.
Get the function that opens the lock (a logical '1' is generated) when the switches are
configured as in the figure. Each switch represents a Boolean variable. Here, an open
lock is represented by an LED that is ON.

▪ The circuit (trapezoid) has the logic function: 𝑓 = 𝑠̅𝑎 + 𝑠𝑏.

✓ Complete the truth table for 𝑓, and sketch the logic circuit.

✓ We can use several instances of this circuit to implement
different functions. For the given inputs, provide the
resulting function 𝑔 (minimize the function).

in1 in2 in3 in4 in5 in6 in7

𝑥1 1 𝑥3 𝑥1 0 𝑥3 𝑥2

OFF (0)

ON (1)

a

b

f
x

?

Room

(Top View)

light beam
𝑥

𝑦

𝑧

𝑤
emitter

receptor

C

B

A

C

B

A

𝑦
𝑦

𝑓

𝑓

𝑎

𝑏
𝑎

𝑏

0

1

a

b

f

s

fs a b

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0

1

0

1

0

1

in1

in2

in3

in4

in5

in6

in7

g

	Fundamental Concepts
	Boolean Algebra
	Deriving Boolean Functions from Truth Tables
	Sum of Products (SOP) and Product of Sums (POS) using minterms and maxterms:

	Timing Diagrams
	Digital Design
	Xilinx FPGA Implementation - Design Flow
	Practice exercises

